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For a system with a first or second order phase transition at T*, we construct a type of renormaliza-
tion group transformation that maps the reduced temperature ¢t =(7 —T*)/T* and the external field 4
for a system of volume V' to ¢’ and &' for another system of volume V’. Our construction is purely ther-
modynamic without reference to effective Hamiltonians. Using the transformation, we derive the finite
size scaling form for the singular part of the free energy, which leads to the scaling laws in the thermo-
dynamic limit. We thus provide a unified thermodynamic framework for phase transitions.

PACS number(s): 64.60.Ak, 05.70.Fh, 64.60.Cn

I. INTRODUCTION

A phase transition, whether it is continuous (of second
order) or discontinuous (of first order), is controlled by a
singularity in the free energy density at the thermo-
dynamic limit, where the system volume becomes infinite
while its density is kept constant. For a finite system,
however, the free energy density is normally an analytic
function of thermodynamic variables and therefore exhib-
its no singularity. The question is then how the singular
function f3 or the singular part of the free energy densi-
ty emerges as the V' = o limit for a sequence of the ana-
lytic functions {5 ], where 5 is a part of the free energy
density for a finite system with volume V. The answer
was given by the finite size scaling ansatz postulated by
Fisher and by Fisher and Barber [1]. This ansatz was
later derived through the renormalization group (RG) ap-
proach [2], which has thus far provided a systematic un-
derstanding of phase transitions in terms of RG transfor-
mations among effective Hamiltonians or coarse-grained
effective free energies defined on different length scales.
However, the finite size scaling ansatz has never been de-
rived within thermodynamics (i.e., without referring to
effective Hamiltonians).

In this paper we will derive, within thermodynamics,
the finite size scaling form for the singular part of the free
energy of a system with a first or second order phase
transition. We will achieve this goal by constructing, on
the macroscopic level, a type of RG transformation
among systems of different volumes. We will start from a
minimal set of basic assumptions on the singular parts of
the free energy and of the free energy density both near
and at the thermodynamic limit. Our derivation will be
purely thermodynamic: we will neither refer to effective
Hamiltonians nor use conventional RG transformations
among them. To distinguish our RG transformations
from the conventional ones, we will call ours thermo-
dynamic RG transformations (TRGT’s).

For second order transitions, the finite size scaling
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form that we will derive leads directly to Widom and
Kadanoff’s scaling hypotheses at the thermodynamic lim-
it, and consequently to the scaling laws among the criti-
cal exponents. For first order transitions, our finite size
scaling form is the one postulated by Fisher and Berker
[3]. The TRGT will thus provide a unified thermo-
dynamic framework for both first and second order phase
transitions.

For simplicity, we will assume our system to be a d-
dimensional ferromagnetic system in a d-dimensional hy-
percube of volume V. The linear dimension L of the sys-
tem is then given by V=L4 and we take the thermo-
dynamic limit for the systems by letting ¥ go to infinity
while we keep the density of the system fixed. We will as-
sume that our system is in thermal contact with a heat
reservoir at temperature 7, and is also subject to an exter-
nal magnetic field A. All the thermodynamic quantities
of our system are then functions of three variables: the
reduced temperature ¢t =(T —T*)/T*, where T* is the
phase transition temperature, the external field 4, and the
system volume V. The phase transition point is located
at the origin (0,0) of the r-A plane.

II. ASSUMPTIONS

While the volume of our system is finite, its thermo-
dynamics is completely determined by the free energy
density f(t,h)=F,(t,h)/V, where Fj is the Helmholtz
free energy of the system. In thermodynamics, only ¢ and
h control an equilibrium state of the system: no more pa-
rameters can come into play. As we approach the ther-
modynamic limit, our system develops a phase transition
at (0,0), around which singular behaviors of various ther-
modynamic quantities (e.g., a divergence in the specific
heat for a second order transition) are dictated by the
singular part f5 of the free energy density f .. For a
finite system of volume V, we define the singular part of
the free energy density as fp=f, —(f, —f5 ) [4], which
converges to f S as V— . We also introduce the corre-

2076 ©1996 The American Physical Society



53 THERMODYNAMIC RENORMALIZATION GROUP

sponding singular part of the free energy Fy=Vf5.
While f3 is an analytic function of ¢ and 4 in some
domain including (0,0), 3, is not analytic at (0,0). Our
central question is how the singular function f5 emerges
as the ¥ = oo limit for the sequence of the analytic func-
tions {f3}. We will answer this question by deriving the
finite size scaling ansatz starting from the following
minimal set of basic assumptions on f3, f3, and Fj:

(I) Assumption of analyticity: f ,§ and F ,‘? are analytic
in a domain around (0,0).

(IT) Assumption of uniform convergence: the sequence
{f>} converges uniformly to f3 in the domain around
(0,0), except at (0,0).

(ITII) Assumption of singularity: If the phase transition
is of first order, then we assume that f5 (£,0)=—u  |t|
and f3(0,h)=—m_|h|, where u(t>0), u_(t<0),
m  (h >0), and m _(h <O0) are all positive constants. If
the phase transition is of second order, then we assume
that £S5 (£,0)=—a|t|>" % and f3 (0,h) =—b |h|'/3"],
where a . (¢t >0, a_(t <0), b, (h >0), b_(h <0), a, and
6 are all positive constants. We can combine these two
cases by assumm; that f3 (£,0)0=—a.|t| and
f5(0,h)=—b,|h] ", where for a first order transition
x,=x,=1,a,=u,, and b, =m, and for a second or-
der transition x,=1/(2—a)and x, =1/(1/8+1).

(Iv) Assumption of renormalizability:
limy,_,  V(3f5 /3V)=0.

(V) Without loss of generality, we assume that
F$(0,0)=0, because we can always redefine F, by
subtracting F,(0,0) from it so that F,(0,0)
=f,(0,0)=£.(0,0)=0 and F3(0,0)=f3(0,0) =

Assumption 1 follows from an assumption that f is
analytic around (0,0). Assumption II is also based on an
assumption that {f,} converges uniformly to f_,. Both
of these assumptions on [} have been proven for some
systems [5]. Assumptlon II also guarantees that Fj is ex-
tensive for large V: F3,~AF} because Fy ~VfS.

Assumption III comes from the singular behaviors in
thermodynamic quantities around (0,0) at the thermo-
dynamic limit. For a first order transition,
f5(2,0)=—u, |t| leads to the singular part of the inter-
nal energy density uS= —3f3 /9t that jumps from u _ to
u, at t=0, while A is kept at zero. Similarly,
f3(0,h)=—m_ |h| produces the singular part of the
magnetization density mS=—298f53 /dh that jumps from

_ tom at h =0, while ¢ is kept at zero. For a second

order transition, 3 (2,0)=—a |2|'”* leads to the singu-
lar part of the specific heat ¢S=—T*3*fS /dt? that
diverges as cS=c,|t|7% (here ¢, =(2—a)(1—a)T*a.
around ¢t =0 while A& is kept at zero. Similarly,
£5(0,h)=—b|h|"/®*! produces the singular part of the
magnetlzatlon density that behaves as mS=m’,|h|'/?
[here m'. =(1/8+1)b, ] around kA =0, while ¢ is kept at
zero.

Assumption IV is satisfied if fj can be written, as is
commonly assumed [6], as fy=f3 +oS /v
+0(V~%4), where oS is the singular part of the
(d —1)-dimensional surface free energy density. The
reason for requiring this assumption as well as for calling
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it “assumption of renormalizability”” will become clear in
Sec. III.

III. THERMODYNAMIC RG TRANSFORMATIONS

We define a TRGT, which maps ¢ and h of a system of
volume V' to ¢’ and h' of another system of volume V’, by
demanding the singular part of the free energy to be
preserved: Fi(t,h)=F3.(t',h’). We will denote this
TRGT as (t',h')=Rypy(t,h). We will show that we can
always construct such TRGT’s near the transition point
(0,0), and that the TRGT is a device with which we can
expose the way fj approaches its thermodynamic limit
[

The TRGT may appear somewhat similar to the con-
ventional RG transformation (CRGT), which preserves
the singular part of the free energy between a system with
N degrees of freedom and the corresponding coarse-
grained system with a smaller number of degrees of free-
dom, which can be obtained through a block spin trans-
formation in real space or by integrating out the short
wavelength degrees of freedom in momentum space. The
main difference is that the TRGT maps only two macro-
scopic variables ¢t and A to another pair ¢’ and h’, while
the CRGT maps, by definition, a set of an infinite number
of coupling constants in an effective Hamiltonian to
another such set. In the CRGT, a coarse graining of the
original degrees of freedom generates many additional
coupling constants, whereas the TRGT does not involve
such coarse graining. We will show that the TRGT’s are
one-to-one analytic transformations that form a group,
whereas the CRGTs have, in general, no inverse transfor-
mation and therefore form a semigroup, and their
analyticity is sometimes a delicate issue [7].

We will construct a TRGT in three steps. First we will
construct a transformation between (£,0) and (¢',0) b
holding 4 at zero. We will then construct another trans-
formation between (0,4) and (0,4’) by holding ¢ at zero.
We can hold either ¢ or 4 at zero, because they are exter-
nal parameters that we can control independently of each
other. Finally we will extend these two transformations
to a domain around (0,0). According to assumption V,
F§(0,0)=O=F§(0,0), and therefore the transition point
(0,0) is a fixed point for any TRGT.

(i) h =0. We demand that F;(z,0) be preserved by the
TRGT or be independent of the system volume V:

dF}}(1,0) ) 5
=YY . = __+ —_ S
where
— | dt afy afy
BAO=V 5y FS0) TV Sy /( a |-
(2)
According to assumption II, lim,_ ,3/7(,0)/dt

=df5 (1,0)/dt, except at (0,0). Applying assumption IV
in Eq. (2) and using assumption III, we find
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Vlim By()=B(1)=—1/{d In[— f5 (1,0)1/dt}

=—x,t .

For large V¥, we can solve Eq. (1) or an RG equation for
h =0 by the method of characteristics after replacing
with B,. By solving a characteristic equation,
dV/V =dt/B_(t), we then obtain, for large V and V~,
Vv t=v"'¢'". The TRGT for h =0 is thus a rescaling
transformation of t given by (¢',0)=R,.,(t,0)=((V/
¥')*t,0). We can then express the singular part of the
free energy as F 5(t,0)=.>4( Vx’t), where, according to as-
sumption I, A is an analytic function. The existence of
this TRGT crucially depends on the existence of the limit
function B, which is guaranteed by assumption IV. We
therefore call assumption IV the assumption of “renor-
malizability.”

The manner in which we have constructed the TRGT
is analogous to the way we find, in lattice field theory
(LFT), how the lattice constant a controls the bare cou-
pling constant g as the continuum limit ¢ -0 is ap-
proached. ¥ and ¢ in the TRGT correspond to 1/a and g
in LFT, where we find g as a function of a by demanding
the mass gap m,(g)=(1/a)m(g), which corresponds to
F3(t,0), to be independent of a.

(i) +=0. As in (i), we demand that Fjy(0,h) be
preserved by the TRGT:

0=V {dF3(0,h)/dV}={Vd/3V+y,(h)d/3h}F3(0,h) ,

where vy, =V (dh /dV)FS(0 »y Which, according to as-

sumptions II, III, and IV, converges to ¥ ,(h)
=—1/{dIn[—f3(0,h)]/dh}=—x,h as V— . For
large V¥, we can solve this RG equation for ¢t =0 by the
method of characteristics after replacing v, with y . By
solving a characteristic equation, dV/V =dh /y ,(h), we
then obtain, for large ¥V and V', V*h=v""n'. The
TRGT for ¢t =0 is thus a rescaling transformation of A
given by (0,2")=R.,(0,h)=(0,(V/V')"h). We can
then express the singular part of the free energy as
F§(O,h)=$( yh h), where, according to assumption I, B
is an analytic function.

(iii) Extension. To extend our TRGT to a domain
around (0,0), we assume that |V ‘t| <<1and |V *h| <1,
so that we can expand Fj around (0,00 as
F(t,)=A'OXV ') +B OV "h)+O0 (12, h%th).  If
the system satisfies the time-reversal symmetry [i.e.,
F,(t,—h)=Fy(t,h)], then we instead obtain

F(t,h)=A"(0) (V)4 {A"(0)/2} (V1)

+{B"(0)/2}(V"h)*+0 (¢3,th?) ,

because in  this case (3F}/dh) =0 and
(3%F} /dtdh ),=0. Therefore, for (¢,h) close to (0,0), we
find FS(t,h)=FS(V/V')'4,(V/V')"h), so that the
TRGT is given by (t',h")=Rp(t,h)=(V/
| 4 )x't,( V/V')"h ), which is a one-to-one analytic rescal-
ing transformation of ¢t and h. We also expect that this
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TRGT can be extended to a region further away from
(0,0) on the z-h plane for the following reasons. First,
along both the ¢ axis and the A axis, the TRGT can be ex-
tended over a longer interval centered around (0,0) be-
cause the functions A (¥ ') and B(V "h) contain higher
order terms in ¢ and A, respectively. Second, because of
the analyticity of F}, if

FE(t,)=F5(V/V' V', (W /V')"h)

holds in a small domain around (0,0), then it should also
hold outside this domain. Assuming that the TRGT can
be extended over a larger domain is analogous to an as-
sumption made in the conventional RG theory that a
linearized CRGT around a critical fixed point is diagonal
in relevant variables ¢ and h.

IV. FINITE SIZE SCALING FORM

Choose a large system of volume V|, as a reference sys-
tem with (¢y,h,), and consider a TRGT from an arbi-
trary system of large volume V with (z,h) to this refer-
ence system: t,=(V/Vy) 't and ho=(V/V, Y"h. Ac-
cording to the definition of the TRGT,

F(t,h)=Fy (to,ho)

=F§ (V/VoV't,(V Vo) " h)=F( Vi vhhy

where, according to assumption I, i7(p,q)EF,§0 (p/

Vg’ ,q/ Vg" ) is an analytic function of arbitrary variables
p and g. This result, Fp=% V¢, V" h), is the finite size
scaling form for Fjy. Usually, the finite size scaling form
is expressed in terms of the system’s linear dlmensmn L
as  FS=FL"4,L™h). Since FS(p/V™,q/V™")
=Fj, (p/Vx' q/Vy"), Fp,q) does not depend on a

choice of ¥, and is therefore uniquely determined. By
taking a derivative of this finite size scaling form for Fy 3
with respect to t or A, we can derive finite size scaling
forms for the singular parts of the internal energy densi-
ty, specific heat, magnetization density, and magnetic
susceptibility [6].

(i) First order transitions. For this case, x,=x;, =1,
and we obtain F 2z =F(L%,L%), which Fisher and Berk-

er [3] postulated for these transitions.

(ii) Second order transitions. For this case,
x,=1/(2— a) and x,=1/(1/8+1), and F}
=F(L4/ =)y, [ 4/1/8+ Dp) which is the ansatz proposed
by Fisher and by Fisher and Barber [1].

V. SCALING LAWS AT THE
THERMODYNAMIC LIMIT

Using the above finite size scaling form for F}, we can
show that, for f,
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FEA A =1/ VIFS (A, t, A7 h)

={(A/AM}FHAV) L, (AV) " h)
=)~f;f,,(t,h) .

In the ¥ = limit, f3 is therefore a generalized homo-
geneous function: 5 (A't,A""h)=AfS (t,h), which
leads to fS = ItII/X’ffo (sgn(1),h e,

(i) First order transitions. For this case, x,=x;, =1,
and f5 =t f3 (sgn(t),h /|t]).

(i) Second order transitions. For this case,
x,=1/(2—a) and x,=1/(1/6+1), and f5
=t|272fS (sgn(z),h /|t|3?~®/@+D) " By defining A as
A=8(2—a)/(8+1), we obtain Widom’s scaling hy-
pothesis: f3, =[t|>7%f% (sgn(1),h /|t|*), which directly
leads, as is well known, to Rushbrook’s scaling law
a+2B+y =2, and Griffiths’ law a+B(8+1)=2.

VI. FINITE SIZE SCALING FUNCTIONS
AND UNIVERSALITY

The finite size scaling function F(p,q) for p =0 and
g =0 embodies the finite size rounding of the singularity
of fS around the transition point, while asymptotic
behaviors of the partial derivatives of F as p—+ o or
g—+too (eg., lim, 4, |p|*{d*Fp,0)/3p>*}=—c,/T*
for a second order transition) are determined by the
singular behaviors of thermodynamic quantities at the
thermodynamic limit (e.g., the divergence in the specific
heat for a second order transition) [6]. Our thermo-
dynamic approach says nothing about the universality [4]
of the scaling function F among different systems. How-
ever, we can still define a universality class as a collection
of systems whose scaling functions share the same asymp-
totic behaviors. Since these asymptotic behaviors are
completely determined by the exponents x, and x; and
amplitude ratios such as u ;. /u _, each universality class
is also uniquely specified by them.

(i) First order transitions. Each universality class is
specified by x,=x, =1L, u, /u_,m /m_,andu /m_.

(ii) Second order transitions. Each universality class is
specified by x,=1/(2—a), x,=1/(1/8+1), ¢, /c_,
m'y /m’_, m,/m_, X+/X—, cy (T*m',),
c . /(T*m,), ¢ . N(T*xy), m'y/m,, m', /x,, and
my /X4, where mS(t <0,0)=m(—t)P [here
m 4 (h >0), and m _(h <0)] and the singular part of the
magnetic susceptibility x5(6,0)=x|t|7" [here
X+(t>0),x_(¢t <0)].

VII. FINITE SIZE SCALING FORM
FOR CORRELATION FUNCTIONS

To derive a finite size scaling form for a two-point
correlation function which leads to Kadanoff’s scaling
hypothesis, we must generalize our approach by allowing
the external field to be spatially varying on the macro-
scopic length scale. To this end, we first divide our sys-

“ tem of volume V into a set of small but still macroscopic
subsystems. We will set the number of subsystems to be a
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constant Ng. The number of spins in each subsystem is
then proportional to ¥V /Ng, which increases as V in-
creases. We now introduce a slowly varying external field
which is almost constant inside each subsystem so that
we can label the external field as h; =h (¥; /V'/9), where
7; is the position of the center of the ith subsystem. We
must also specify the strength u for the interfacial cou-
pling between each pair of nearest-neighbor subsystems.
We assume that the interactions among spins in our sys-
tem are short ranged, so that we do not need to consider
long-ranged couplings among the subsystems. Note that
for a particular system, u takes a particular value and is
therefore not a free parameter. It is, however, conceiv-
able that we can vary u by inserting a buffer material into
interfaces between subsystems. Fj then becomes
F(t,{h;},u). We will construct a TRGT between two
systems of volume V and V’'. We assume these systems to
have geometrically similar overall shapes, and we divide
both systems into Ng subsystems in a similar way so that
there exists a one-to-one correspondence between the
subsystems of one of the systems and those of the other.
We then construct a TRGT between h; and h; by setter-
ing t =0, h;=0 (j#i), and u =0: h/=((V/Ng)/(V'/
Ng)*h,=(V/V')"h,. To construct a TRGT between u
and u’, we set ¢t =0 and h; =0 for all i. Note that as the
subsystem size grows, in order to preserve the interfacial
free energy we must increase u. We thus postulate
u'=(v/,v' )x“u, where x, <0. We then obtain the finite
size scaling form FS=F(V't,{V'"h;},V “u). Noting
that the number of spins in each subsystem is proportion-
al to V' /Ny, we find the two-point correlation function to
be

Gy =(V/Ng) X3°F} /3h;0h;)

2xy, —

=y Ve VA Y (V) V)

where r =7, —F;|. This leads to

2x

GSy(rt, () =A"" VG (r /A X e (A kA )

By setting all h; =0 after taking the V =« limit, we ob-
tain

2x, —1

GS(r,t,u)=GS (r,1,10},w)=A""""VGS(r /A4 3512, 3 0 )

which, for large r, leads to

2d(x, —1) dx, d
GS(r,t,u)=r " n GS(L,r T r )

2d(x, —1) d:
PGS, r e 0)

~

because x, <O [8].

(i) First order transitions. For this case, x,=x, =1,
and G3r,t,u)=G31,r%,0). For =0, GS(r,0,u)
=G%(1,0,0), or G5(r,0,u) is constant. This is consistent
with our expectation for first order transitions, where the
correlation length remains finite so that the correlation
function vanishes for large r.

(i) Second order transitions. For this
x,=1/(2—a)and x, =1/(1/8+1), and we find

GS(r’ t,u)=r_2d/‘5+“GS( l’sgn(t)(r|t|(2—a)/d)d/(2—a)’o) ,

case,
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which is Kadanoff’s scaling hypothesis: GS
=p @240 7¢(41"). By comparing these expressions for
G5, we can derive Josephson’s hyperscaling law
2—a=dv [8], and Fisher’s scaling law y =v(2—1).

VIII. SUMMARY

For a system with a first or second order phase transi-
tion, we have constructed a thermodynamic renormaliza-
tion group transformation (TRGT) that maps the re-
duced temperature ¢ and the external field 4 for a system
of volume V'to ¢’ and &’ for another system of volume V".
Our derivation has been purely thermodynamic, and
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based on a minimal set of assumptions on the singular
parts of the free energy and of the free energy density
both near and at the thermodynamic limit. Our TRGT is
a one-to-one analytic rescaling transformation of macro-
scopic variables ¢t and 4. The TRGT’s allow us to derive
the finite size scaling form for the singular part of the free
energy, which leads to the scaling laws at the thermo-
dynamic limit. We have thus shown that the finite size
scaling of first and second order phase transitions and the
scaling laws at the thermodynamic limit are all truly
thermodynamic results. The thermodynamic renormal-
ization group approach presented in this paper therefore
provides a unified thermodynamic framework for phase
transitions.
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